品牌: | 藍(lán)陽環(huán)保 |
產(chǎn)地: | 江蘇常州 |
加工定制: | 是 |
單價: | 24695.00元/套 |
發(fā)貨期限: | 自買家付款之日起 天內(nèi)發(fā)貨 |
所在地: | 江蘇 常州 |
有效期至: | 長期有效 |
發(fā)布時間: | 2023-12-16 12:11 |
最后更新: | 2023-12-16 12:11 |
瀏覽次數(shù): | 108 |
采購咨詢: |
請賣家聯(lián)系我
|
水是自然資源的重要組成部分,隨著社會經(jīng)濟(jì)與工農(nóng)業(yè)不斷發(fā)展、氣候變化和全球人口激增,造成水資源短缺,而用水需求量和污水產(chǎn)生量均飛速增長。我國水資源匱乏和水資源污染問題十分突出,已成為制約我國經(jīng)濟(jì)社會可持續(xù)發(fā)展的瓶頸。城市污水廠的尾水,作為一種水質(zhì)穩(wěn)定的水源,可用于河湖、景觀水體的補(bǔ)水,以解決水少的問題,但其水質(zhì)仍屬于GB3838—2002《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》劣Ⅴ類水,不適合長期補(bǔ)給河湖和景觀水體。尾水作為再生水具有顯著的經(jīng)濟(jì)、社會、生態(tài)效應(yīng),如減少污染物排放,節(jié)約成本,提高水資源的綜合利用率,減小河湖水體的污染負(fù)荷等。城市污水再生化已逐漸成為緩解水資源供需矛盾的重大舉措。
目前國內(nèi)外的再生水處理技術(shù)主要有物化和生化2類:物化技術(shù)包括混凝過濾、活性炭吸附、臭氧氧化、膜分離、氯消毒等,生化技術(shù)包括生物濾池、膜生物反應(yīng)器、A/A/O、氧化溝、序批式生物反應(yīng)器(SBR)和AB法等。處理工藝有混凝-沉淀過濾-消毒、超濾-活性炭、臭氧-活性炭-反硝化生物濾池、膜生物反應(yīng)器-反滲透、膜生物反應(yīng)器-臭氧消毒、微濾-反滲透等。同時,城鎮(zhèn)污水處理廠目前也面臨污泥處置的難題,污泥的產(chǎn)量大、成分復(fù)雜,大部分的污泥并未經(jīng)過穩(wěn)定化和無害化的處理處置,易造成二次污染。推廣污泥減量化的技術(shù),從源頭上減少污泥的產(chǎn)量也不容忽視。相較于傳統(tǒng)的活性污泥法,膜生物反應(yīng)器(membranebioreactor,MBR)通過膜分離取代二沉池,使其泥水分離效果更為明顯,且高效截留活性污泥和大分子物質(zhì)而無污泥膨脹之虞。由于其具有出水水質(zhì)好、污泥濃度高、剩余污泥產(chǎn)量低和占地少等優(yōu)點,使其可能實現(xiàn)以零污泥排放的方式運行,同步實現(xiàn)污水和污泥的處理。
傳統(tǒng)納濾作為介于超濾和反滲透之間的膜分離技術(shù),因具有操作壓力較低,節(jié)能,出水水質(zhì)好,對無機(jī)物、有機(jī)物和病毒均有良好的分離效果等優(yōu)勢,被廣泛用于水質(zhì)改善、水軟化、污水處理及回用、染料和重金屬的濃縮等方面。超低壓納濾(DF)與傳統(tǒng)納濾相比,具有更低的操作壓力(<0.4MPa)和運行成本,在相同的操作壓力下具有較高的出水量,截留分子量為100~500Da,廣泛應(yīng)用于再生水深度處理。
近期研究表明,MBR在與其他傳統(tǒng)脫氮除磷的工藝(AO、SBR、A2/O、移動床等)結(jié)合后,可有效提高脫氮除磷的效果,且有助于MBR膜污染的緩解與控制。針對污泥的減量化和再生水的高品質(zhì)化問題,筆者建立一套MBR-DF中試系統(tǒng)和傳統(tǒng)活性污泥法處理工藝(CAS)系統(tǒng),分析其運行特性及對城鎮(zhèn)污水的處理效果。
1、材料與方法
1.1 試驗裝置
于北京市海淀區(qū)某再生水廠內(nèi)構(gòu)建了2套中試系統(tǒng),分別為MBR-DF系統(tǒng)和CAS系統(tǒng),工藝流程如圖1所示。其中,MBR系統(tǒng)出水作為DF系統(tǒng)進(jìn)水,DF系統(tǒng)外排的濃水通過回流至MBR系統(tǒng)的厭氧池內(nèi),使MBR-DF系統(tǒng)以濃水零排放的方式運行。2套系統(tǒng)設(shè)計進(jìn)水量均為25m3/d。其中MBR系統(tǒng)以恒通量的模式運行,采用變頻泵進(jìn)行間歇抽吸出水,抽停時間比為7min/1min。2套系統(tǒng)中的厭氧池和缺氧池均設(shè)置潛流攪拌器,好氧池內(nèi)設(shè)置微孔曝氣裝置,并在MBR膜池內(nèi)設(shè)置穿孔曝氣管,為池內(nèi)微生物供氧和吹掃膜組件表面的污染物。2套系統(tǒng)中厭氧池、缺氧池、好氧池的水力停留時間(HRT)均分別為2.2、3.8和5.0h,而MBR膜池和二沉池的HRT均為3.0h。試驗選用北京市某單位生產(chǎn)的型號為DF30-8040的超低壓納濾膜,材質(zhì)為聚哌嗪酰胺復(fù)合材料。
1.2 監(jiān)測指標(biāo)及方法
各系統(tǒng)的常規(guī)監(jiān)測指標(biāo)包括進(jìn)出水的COD、NH4+-N、NO3--N、TN、TP、PO43-、pH、TDS、總硬度、DOM、內(nèi)分泌干擾素(EDCs)、HCO3和SO42-。各指標(biāo)的檢測方法與主要儀器如表1所示。
1.3 DOM三維熒光光譜分析
采用三維熒光光譜(EEM)技術(shù)進(jìn)行DOM分析,EEM被廣泛用于污水或天然水體的DOM以及藻類熒光識別等研究中。其原理是,具有熒光特征的基態(tài)能級的有機(jī)物在受到紫外-可見光激發(fā)后,躍遷到激發(fā)態(tài),因不穩(wěn)定,躍遷回到基態(tài)能級,并以光的形式(熒光)釋放能量。EEM既可定性分析DOM的組分,亦可結(jié)合數(shù)學(xué)分析方法進(jìn)行半定量分析。
采用熒光分光光度計(F-7000FL,Hitachi,日本)測定樣品的三維熒光光譜,選用3-DScan模式,激發(fā)波長(Ex)為200~450nm,發(fā)射波長(Em)為260~550nm,激發(fā)掃描間距為5nm,發(fā)射掃描間距為5nm,掃描速度1200nm/min,激發(fā)和發(fā)射的狹縫寬度均為5nm,設(shè)置PMT電壓為700V,響應(yīng)速度0.5s??瞻姿畼訛镸illi-Q超純水(電阻率為18.2MΩ·cm)。用尋峰(peak-picking)法分析EEM譜圖中有機(jī)物的熒光特征。
1.4 EDCs分析
采集的水樣于24.0h內(nèi)完成富集。采用OasisHLB通過固相萃取(solidphaseextraction,SPE)的方法完成對水樣中EDCs的提取與富集,主要步驟參照文獻(xiàn)。富集前,先將0.7μm玻璃纖維濾膜(GF/F,Whatman)置于450℃的馬弗爐中灼燒2.0h,然后用其過濾水樣,以去除水樣中的雜質(zhì)。
對提取富集后的樣品進(jìn)行GC-MS分析,所用載氣為高純氦氣(純度大于99.999%),毛細(xì)管色譜柱為HP-5MS(30m×250μm×0.25μm)。GC-MS條件設(shè)置:初始溫度150℃保持2min,以10℃/min升溫至260℃,再以15℃/min升至300℃保持1min,進(jìn)樣1μL,進(jìn)樣時進(jìn)樣口溫度保持在280℃,輔助加熱區(qū)溫度保持在310℃。先用全掃描(fullscan)模式對樣品進(jìn)行定性分析,再用選擇離子監(jiān)測(SIM)模式對樣品進(jìn)行定量分析。
1.5 試驗方法
試驗采用北京市海淀區(qū)某再生水廠的膜格柵后的城市污水作為原水,其進(jìn)水水質(zhì):COD為87.0~165.7mg/L、NNH4+-N濃度為14.0~31.0mg/L、TN濃度為14.2~32.4mg/L、TP濃度為2.5~3.3mg/L。采集MBR-DF系統(tǒng)進(jìn)水、MBR出水和DF出水置于1.0L的棕色樣品瓶中,置于4℃冰箱保存,待測。
2、結(jié)果與討論
2.1 MBR-DF系統(tǒng)對主要污染物的去除
2.1.1 COD的去除
進(jìn)水中大部分的COD由MBR系統(tǒng)的微生物代謝消耗和納濾膜截留共同去除。MBR-DF系統(tǒng)對總進(jìn)水COD的平均去除率為95.7%,其中MBR系統(tǒng)對總進(jìn)水COD的平均去除率為88.1%,而DF系統(tǒng)對總進(jìn)水的COD去除率為7.6%,出水COD小于10.0mg/L,滿足GB3838—2002《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》Ⅱ類水質(zhì)要求。
2.1.2 氮、磷和TOC的去除NH4+-N和NO3--N的去除
如圖2所示。從圖2(a)可以看出,進(jìn)水NH4+-N濃度為14.0~31.0mg/L,MBR出水和DF出水NH4+-N濃度分別低于1.0和0.1mg/L,表明MBR對NH4+-N的去除效果好且出水穩(wěn)定,而DF系統(tǒng)可進(jìn)一步提高出水的水質(zhì),去除率達(dá)到99.0%以上,MBR-DF系統(tǒng)出水NH4+-N滿足地表水Ⅱ類水質(zhì)要求。從圖2(b)可以看出,進(jìn)水NO3--N濃度很低,而MBR出水NO3--N濃度達(dá)10.5mg/L左右,經(jīng)DF系統(tǒng)后出水NO3--N濃度略微下降。表明在MBR系統(tǒng)好氧階段NH4+-N經(jīng)硝化作用轉(zhuǎn)化成NO3--N,使MBR系統(tǒng)出水中NO3--N濃度升高,DF系統(tǒng)對NO3--N的截留效果不明顯。