邦飛利變頻器維修: | 昆山樂修 |
各種變頻器維修: | 價格優(yōu)惠 |
變頻器運行報警維修: | 值得推薦 |
單價: | 168.00元/臺 |
發(fā)貨期限: | 自買家付款之日起 天內發(fā)貨 |
所在地: | 江蘇 蘇州 昆山 |
有效期至: | 長期有效 |
發(fā)布時間: | 2024-03-15 19:44 |
最后更新: | 2024-03-15 19:44 |
瀏覽次數(shù): | 120 |
采購咨詢: |
請賣家聯(lián)系我
|
安川變頻器報GF/LF/OU故障代碼維修問題判斷
安川變頻器報GF/LF/OU故障代碼維修問題判斷
兩例變頻器開關電源電路實例 兼論電容C23在電路中的重要作用 先看以下電路實例:圖1 東元7200PA 37kW變頻器開關電源電路圖2 海利普HLPP001543B型15kW變頻器開關電源電路圖1、圖2電路結構和原理基本上是相同的,下面以圖1電路例簡述其工作原理。開關電源的供電取自直流回路的530V直流電壓,由端子CN19引入到電源/驅動板。電路原理簡述:由R26R33電源啟動電路提供Q2上電時的起始基極偏壓,由Q2的基極電流Ib的產(chǎn)生,導致了流經(jīng)TC2主繞組Ic的產(chǎn)生,繼而正反饋電壓繞組也產(chǎn)生感應電壓,經(jīng)R32、D8加到Q2基極;強烈的正反饋過程,使Q2很快由放大區(qū)進入飽合區(qū);正反饋電壓繞組的感應電壓由此降低,Q2由飽合區(qū)退出進入放大區(qū),Ic開始減?。徽答伬@組的感應電壓反向,由于強烈的正反饋作用,Q2又由放大狀態(tài)進入截止區(qū)。以上電路為振蕩電路。D2、R3將Q2截止期間正反饋電壓繞組產(chǎn)生的負壓,送入Q1基極,迫使其截止,停止對Q2的Ib的分流,R26-R33支路再次從電源提供Q1的起振電流,使電路進入下一個振蕩循環(huán)過程。 5V輸出電壓作為負反饋信號(輸出電壓采樣信號)經(jīng)穩(wěn)壓電路,來控制Q2的導通程度,實施穩(wěn)壓控制。穩(wěn)壓電路由U1基準電壓源、PC1光電耦合器、Q1分流管等組成。5V輸出電壓的高低變化,轉化為PC1輸入側發(fā)光二極管的電流變化,進而使PC1輸出測光電三極管的導通內阻變化,經(jīng)D1、R6、PC1調整了Q2的偏置電流。以此調整輸出電壓使之穩(wěn)定。這是我的第二本有關變頻器維修的書中,對圖1電路原理的簡述,由于疏漏了對電容C23作用的講解,給讀者帶來了一些疑問:1)N2繞組負電壓是如何加到Q2基極的?2)電路中C23的作用是什么?3)C23的充、放電回路是怎樣走的?這3問題涉及到電路原理的關鍵部分,無它,開關電管Q2即無法完成由飽和導通進入放大區(qū)快速截止重新導通的工作狀態(tài)轉換,三個問題其實又只是一個問題,即圖1的C23(或圖2中的C38)究竟對電路的工作狀態(tài)轉換起到怎樣的重要作用?
先不要忙,將這個問題暫且按下不表,先說幾句題外話。在由3844(42/43/34)PWM脈沖芯片為核心構成的開關電源電路,大行其道的今天,像圖1、圖2這樣由兩只雙極型晶體管構成的開關電源電路(對比于集成器件,或稱之為分立元件構成的開關電源),仍占有一席之地,在數(shù)個變頻器廠家的產(chǎn)品中,得到應用。難道是廠家技術人員有懷舊情結嗎?還是為了降低生產(chǎn)成本?其實都不是!采用分立元件做開關電源,設計人員肯定有更全面和深入的考慮。而我的維修經(jīng)驗而論,我比較傾向和于由分立元件構成的開關電源,理由是其工作可靠性高,故障率低,使用和維修都比較讓人放心。電路的質量,并不取決于采用集成器件或分立元件,也不取決于電路采用元器件的數(shù)量多少,這些都是形式而非本質。相對于分立元件組成的電路,集電器件是否就具有技術上的性和工作上的可靠性?則真的是一個問號,不可一概而論。比較二者電路的設計難度,分立元件的電路,恐怕難度要更高一些。與分立元件的電源相比,用3844做成的電源電路,更像一個“傻瓜型”電路,有固定的電路模式,與成型外圍作成一個電路單元,可以應急取代任意開關電源電路,達到修復目的(有的技術人員已經(jīng)這樣做了)。電路的元件數(shù)量愈少,電路結構越是精簡,電路的故障率就越低,這是一個被實踐驗證的法則。實際維修中,采用圖1電路形式的開關電源,故障率和可靠性,要優(yōu)于用集成器件做成的開關電源。個別電源,停電時還好好兒的,一上電,開關管就炸掉了,說明即使“傻瓜型”電路,在設計上也不可掉以輕心,關鍵環(huán)節(jié)電路參數(shù)
的嚴重偏離,也會導致電路設計的失??!電路的優(yōu)劣,還是不在于電路的形式,不在于采分立元件還是采用集成器件,用3844芯片設計的大量經(jīng)典電路,在變頻器開關電源中也同樣大展身手。此處不再討論兩種電路的優(yōu)劣,結合電路的振蕩工作過程,說明一下電容C23在電路中所起的作用。1)變頻器上電瞬間,由啟動電阻R20R30、R33提供開關管Q2的基極正偏電流,Q2由截止狀態(tài)進入放大區(qū),產(chǎn)生IC2開關變壓器TC2的主繞組N1流入電流而儲能反饋繞組N2產(chǎn)生上+下-的感應電壓信號,經(jīng)二極管D8輸入開關管Q2的基極,使Ib2IC2,直至IC2達到飽和。引發(fā)振蕩狀態(tài)的個轉折。二極管D8正偏導通時,相當于將電容C23短接
(二者成并聯(lián)接法),C23在此時不起作用。2)Q2飽和期間(IC2不再變化),N2感生正電壓降低Ib2IC2令Q2退出飽和區(qū)進入放大區(qū)。IC2N2反饋繞組感應電壓反向,從圖1上看,感應電壓的極性變?yōu)樯县撓抡?,二極管D8反偏截止。假設沒有C23,電路的振蕩過程將被阻斷,C23的作用在此時凸顯,使振蕩過程能夠得以繼續(xù)。D8反偏,相當于開路,解除了對C23的短接,N2感應電壓,經(jīng)R32、Q2的be結到電源地,形成C23的充電電流通路,在C23上形成左+右-的充電電壓。從信號耦合的角度來看,C23將N2繞組的負向電壓耦合至Q2的基極,對Q2基極的正偏電壓進行了衰減,進一步令Ib2IC2,強烈正反饋過程使Q2很快進行截止狀態(tài)。再換一個角度看,在中、高頻電路,雙極型晶體管的be結電容,不容忽視。
正向偏壓,對結電容實施了上+下-的充電控制,C23所提供的負向電壓,有反向強制將Q2的be結電容所儲存的“電荷拉出”的作用,能令其快速截止。這是為什么要對開關管施加負向偏壓的原因。Q2截止后,因為C23上負壓的存在(C23上的負壓有一個放電時間),C23能維持一定時間的截止,直到其負向電壓能量因放電小于啟動電阻所提供正向電壓的能量,Q2由截止狀態(tài),又會再度進入放大區(qū)。C23的負電壓(對Q2來講,是負向偏壓)的放電回路:C23右端的負電壓R32N2繞組到地DC530V供電電源啟動電阻C23的左端,C23的充電電荷被泄放,Q2負向偏壓消失,為重新導通創(chuàng)造了條件。并聯(lián)在分流管Q1的c、e極的二極管D9,限制Q2的be結反偏壓峰值,有保護Q1、Q2的作用。電路設計中,C23容量的選值和R33的選值,作為RC時間常數(shù)影響到振蕩周期,需要與開關變壓器的相關參數(shù)一起,精心核算和核準。 變頻器對DC530V電壓的采樣和檢測,是通過對開關變壓器二次繞組的電壓采來完成的。我在相關博文已道破這一“機密”。在這里順便再說明一下。 開關管Q2飽合導通時,將TC2的初級繞組接入直流530V電源的兩端,此時D11正偏導通,將N3繞組感應所得,與DC530V供電成比例的負向交流電壓,整流和后續(xù)RC電路濾波后,得到-42V電壓采樣信號,送MCU主板電路,用于直流電壓顯示、過、欠壓報警與停機保護,控制VVV/F輸出等。D11和D12接于同一個次級繞組上,D12在Q2截止期間(TC2釋放磁能)正偏導通,D將“大面積低幅度”的正向脈沖整流作為5V供電,而D11卻在Q2飽和導通期間,將“小面積而幅度高”的負向脈沖做負向整流后,作為電壓檢測信號。D12整流電壓是穩(wěn)壓的,D11輸出電壓值,僅反映DC530V電壓的高低,并非穩(wěn)壓輸出,為什么?朋友們可以自己先想一下,我的直流電壓檢測電路的問號一文中已有討論,上此不予贅述了。圖3 直流回路電壓采樣等效電路及波型示意圖 為驅動電路供電的六組相互隔離的整流、濾波電路,省略未畫,請參見第四章驅動電路的相關內容。 對開關電源故障的檢修,要找出其中關鍵的脈絡。
昆山樂修自動化/南京樂修電子科技維修公司是一家專業(yè)工控和數(shù)控自動化維修服務公司。維修不限制品牌型號,硬件問題我們都是可以維修解決處理。我公司現(xiàn)有昆山, 常州,南京三個維修地址,方便選擇。
主要有兩個電路環(huán)節(jié): 1、振蕩支路包括起振電路和正反饋信號回路。起振電路:由TC2主繞組、開關管Q2的C、E極構成Q2的IC電流回路,和由啟動電阻R26R33、Q2的發(fā)射結構成的(Ib)起振回路;由TC2的正反饋繞組(有時稱自供電繞組,本電路中兼有兩種身份)、R32、D8構成的正反饋回路。起振回路和正反饋回路,二者結合,共同提供了和滿足了開關管Q2的振蕩條件。 2、穩(wěn)壓支路U1、PC1、Q1構成了對輸出電壓的采樣電路和電壓誤差放大電路,以Q1對Q2的IC的分流作用實現(xiàn)對輸出電壓的調整